
421

A Note on Interfacing Object Warehouses and Mass Storage Systems
for Data Mining Applications*

Robert L. Grossman
Magnify, Inc. University of Illinois at Chicago

815 Garfield Street Laboratory for Advanced Computing
Oak Park, IL 60304 851 South Morgan Street
Email: rlg@opr.com Chicago, IL 60607

Tel: +1-708-383-7002 Email: grossman@uic.edu
Fax: +1-708-383-7084 Tel: +1-312-413-2176

Fax: +1-312-996-1491

Dave Northcutt
Magnify, Inc.

815 Garfield Street
Oak Park, IL 60304

Tel: +1-708-383-7002
Fax: +1-708-383-7084

Abstract

Data mining is the automatic discovery of patterns, associations, and anomalies in data
sets. Data mining requires numerically and statistically intensive queries. Our
assumption is that data mining requires a specialized data management infrastructure to
support the aforementioned intensive queries, but because of the sizes of the data
involved, this infrastructure is layered over a hierarchical storage system. In this paper,
we discuss the architecture of a system which is layered for modularity, but exploits
specialized lightweight services to maintain efficiency. Rather than use a full functioned
database for example, we use light weight object services specialized for data mining. We
propose using information repositories between layers so that components on either side
of the layer can access information in the repositories to assist in making decisions about
data layout, the caching and migration of data, the scheduling of queries, and related
matters.

Introduction

Data mining is the automatic discovery of patterns, associations, and anomalies in data
sets. The data mining of large data sets is a special challenge because the process
requires numerically and statistically intensive queries on large amounts of data. Our
assumption is that data mining requires a specialized data management infrastructure, but
because of the sizes of the data involved, this infrastructure is layered over a hierarchical
storage system. Our concern in this paper is an appropriate open, layered architecture to
support this.

A common layered architecture for this type of system is illustrated in Figure 1. There
are three layers: the storage management layer, the data management layer, and the data
mining and analysis layer. Unless these three layers coordinate how the data is
physically laid out, how it is cached and migrated, and how it is prefetched, these layers
can work at cross purposes and drastically impair the performance of the overall system.

* This work was supported in part by the Massive Digital Data Systems Program.

422

The traditional approach forgoes the convenience and modularity of a layered approach
for efficiency: with this approach, the data management system manages storage itself,
while the data mining and data analysis applications manage the data themselves. In
practice, this has meant that generally data mining applications simply work with flat data
that fits into main memory. Of course, this data may be obtained by sampling large
databases, but the point is that the data mining applications themselves work with small
amounts of relatively simple data. This may be thought of as a sample-based approach to
data mining.

In this paper, we are concerned with an alternative approach: the system is layered for
modularity, but exploits specialized lightweight services to maintain efficiency. Rather
than use a full functioned database for example, we use light weight object services
specialized for data mining. With this approach, the data mining applications can work
with large amounts of complex data. Another advantage of this approach is that the data
management services can be used to manage the internal data structures required by the
data mining algorithms. This may be thought of as a data-driven approach to data
mining.

One of our specific concerns in this note is how the different layers can share
information, especially in a heterogeneous environment. We propose using information
repositories between layers so that components on either side of the layer can access
information in the repositories to assist in making decisions about data layout, the
caching and migration of data, the scheduling of queries, and related matters.

This proposal generalizes and extends the proposal in Brown et. al. [1] for providing a
repository between a mass storage system and a relational database management system
and is a refinement of the architecture described in Grossman [2] and [3] for a scaleable
data mining system.

 This work is preliminary. A fuller treatment is in preparation.

423

Background and Related Work

Broadly speaking, there are two relevant traditions: one system-based and one service-
based. In the first, the essential question is how a database management system can
interface to a storage management system. In the second, the essential question is what
services are required so that data management, storage management, and application
services can interoperate in an open network environment.

Relational database-mass storage system interfaces

Historically, databases have managed the storage of single disks; more recently, they
have managed the storage of distributed disks. For some applications though much of the
data is distributed on a storage hierarchy, including tape and other tertiary storage, which
is managed by a mass storage system. One of the most important interfaces effecting
performance is the interface between a relational database client and the mass storage
system. A group at Lawrence Livermore National Laboratory has proposed an interface
between a client of a relational database management system and a mass storage system
Brown et. al. [1]. This interface which they call an Information Data Repository (IDR)
would serve as the home for several relational tables, including: one for relational tables
from the client database (called the bundle table), one for instances of the various
components in the storage hierarchy (called the store table), one for mapping regular
sub-components of bundles to stores (called the block table), and one for a list of pending
requests for moving data between stores (called the movement table). In addition, the
proposal [1] suggests using a standard relational database management system to manage
the various tables in the IDR. The IDR would be external to both the database and the
storage system and all interactions between the database and the mass storage system
would be required to go through the IDR.

Light Weight Object Management Using Network Services

Another approach is to develop a data management system specifically designed for the
mining and analysis of data. This type of system does not require the full functionality of
a database, but instead is optimized to provide low overhead, high performance access to
data which is read often, occasionally appended, but infrequently updated. In addition,
data may be pre-computed and specialized indices may be provided. This can be thought

Web based
access to data

Data

Data Mining Data Analysis Visualization

Data Management Layer

Storage Management Layer
Nodes &
Services

Figure 1. In a layered approach to data mining, rather than manage their own data, data mining
applications use services from a data management layer, which in turn use storage services
from a lower layer.

424

of as providing specialized lightweight application specific data management services
Grossman et. al. [4]; or alternatively, as providing an object warehouse specialized for
data mining applications Grossman [3].

As usual with databases, with this approach there is a manager for physical collections of
objects (called segments). In addition, to achieve scalability, physical collections of
segments are themselves gathered into larger physical units called folios. There is also a
folio manager which interacts with file and storage services, including mass storage
systems. Just as the segment manager can query the folio manager, so can the mass
storage system. The folio manager maintains a table of folios and their physical
locations. In some sense, the folio manager can be viewed as the interface between a
database and a (hierarchical) storage system. See [3] and [4] for more information about
this approach.

Distributed Object Services

The Object Management Group’s Common Object Request Broker Architecture
(CORBA) is an industry standard for the development of distributed object-oriented
applications across heterogeneous platforms. The OASIS environment developed at
UCLA by Mesrobian et. al. [5] is an open environment for working with scientific
information based upon CORBA. CORBA is optimized for working with relatively
large-grained objects in heterogeneous environments in contrast to the use of lightweight
data management and data warehousing described above. In some sense, CORBA is
pessimistic about the physical layout of data and provides the infrastructure to support
this in order to work in heterogeneous environments, while a lightweight approach is
optimistic and only translates the physical format of data when necessary.

Requirements and Objectives

Our over all objective was to design an open system for data mining and data analysis
which scales as the amount of data and the numerical complexity of the query increases.
More specifically, we had the following requirements:

• Large data sets. Our most important goal was to support the mining and
analysis of very large data sets, including data sets large enough to require
multiple disks or tertiary storage.

• Numerically intensive queries. Our second most important goal was to provide

very low overhead, high performance access to the data. In some sense
databases are optimized to provide safe access to data which is expected to
change; our goal was to provide high performance access to data which is
relatively static.

• Transparent access to data. Because of the size of the data sets, much of the
data is expected to be either on tertiary storage or on large arrays of disks. An
important goal was to provide transparent access to the data, independent of
its location or media type.

425

Architectural Description

Our architectural framework consists of a storage management layer, a data management
layer, and an application layer consisting of clients of the data management services. We
are primarily concerned with data mining and data analysis clients. Between each of the
layers is a repository for information: a Storage Interface Repository (SIR) between the
storage management and data management layers and a Data Interface Repository (DIR)
between the data mining applications and the data management layer.

Data Interface Repository (DIR)

Traditionally, data mining has looked for patterns in small amounts of flat file-based data
or sampled small amounts of data from relational databases using SQL queries. Data-
driven data mining requires working with large amounts of complex data, much of which
has to be warehoused because of performance considerations. The DIR has several roles,
including:

• The data required for data mining and data analysis queries may be distributed
in several data management systems, including data warehouses and
operational and archival data management systems. The DIR provides a
uniform interface for data mining and data analysis queries. The DIR
maintains a list of logical data sets and the systems which are maintaining
them.

• For performance reasons, some of the data for data mining applications may

be warehoused, and specialized index and access structures may be provided.
This requires periodically refreshing the data from the operational and
archival databases. The DIR maintains the information required for this to
take place.

• The DIR can also maintain the information for the optimization of data mining
queries using information obtained from the results of previous queries.

Storage Interface Repository (SIR)

Data management systems by necessity divide the data they manage into regular sized
extents. For example, access to file-based data is through blocks of equal length, while a
common type of object-oriented database provides access to objects through extents of
equal length called segments. These extents can then be managed by the data
management systems themselves or by file or storage systems. In particular, they may be
managed by hierarchical storage systems. The SIR has several roles, including:

• The demands upon extents imposed by the database management system are
not necessarily those imposed by the hierarchical storage system. Not all
extents are treated the same by the data management system: for example,
some may contain directory or index information, which it would prefer
remain pinned to secondary storage, even if infrequently accessed. The SIR
provides a mechanism for a database and a hierarchical storage system to

426

exchange information about desired movements of extents or sequences of
extents.

• A database must be able to estimate the time to access data. If the physical
management of the data is delegated to the hierarchical storage system, then
the SIR must contain enough information so that the database can still make
these estimates.

• To work with very large data sets, a hierarchy of extents, as described above,

must be supported by the SIR. For example, for terabyte size data sets, there
are simply too many segments to be managed directly by the database.
Instead, it is important to group objects into segments, and segments into
larger units.

The SIR discussed here is an extension of the IDR proposed in Brown et. al. [1].

Discussion

In this section, we discuss some issues regarding the architecture.

Data Mining Data Analysis Visualization

DIR
Data Interface
Repository (DIR)

SIR
Storage Interface
Repository (SIR)

Object
Warehouse

Object-Relational
Data Management
System

Relational
Data Management
System

File SystemHierarchical
Storage System

Wide Area
File System

Figure 2. The role of the Data Interface Repository (DIR) and the Storage Interface Repository (SIR) is to
maintain information so that services and applications in different layers can interoperate.

427

• Is the interface mandatory or advisory? Systems can be built either way. If
the interface is mandatory, then performance may suffer, since some of a
component’s essential services may have to be accessed externally. On the
other hand, if the service is advisory, inefficiencies are likely and deadlocks
are possible because different components accessing the service may make
conflicting choices.

• Is the interface part of one of the components or independent? Traditionally,

for example, the management of table information, block information, and the
mapping from tables to blocks has been a component of the data management
system. The role of the SIR is to provide this information through a separate
service. Alternatively, the SIR could be incorporated into one of the layers
and accessed from the other layer.

• How should the DIR and SIR be implemented? A variety of implementations

are possible: The DIR and SIR could simply be implemented as a network
service. Alternatively, a relational database can be used as proposed in Brown
et. al. [1], or a CORBA Object Request Broker (ORB) could be used.

• What is the granularity of access? For this approach to succeed, it is

important to be able to adjust the granularity of the objects referenced in the
SIR and DIR so that performance is not adversely effected.

Status

This approach arose out of work with a system for data mining developed by Magnify,
Inc. called PATTERN. PATTERN currently consists of beta versions of an object
warehouse [3] and data mining modules for classification, prediction, and optimization
Grossman et. al. [6]. A demonstration of the system mining and analyzing high energy
physics data took place at Supercomputing 95. A performance evaluation of the system
is currently being prepared and will appear elsewhere.

Currently, the SIR is part of the object warehouse and interfaces to the High Performance
Storage System (HPPS) Teaff [7], while the functionality proposed by the DIR is
currently shared between the different data mining modules.

Summary

In this paper, we propose a layered approach to a data mining system. Data mining
applications exploit specialized data management services from a lower level, which in
turn exploit specialized storage management services. We propose providing information
repositories between each level so that services on either side can efficiently exchange
information. To maintain performance, we use specialized lightweight data management
services instead of a full functioned database, and adjust the granularity of the data
passed between the layers to lower the cost of accessing the information repositories.

428

References

[1] P. Brown, D. Fisher, S. Louis, J. R. McGraw, R. Musick and R. Troy, “The Design of
a DBMS/MSS Interface,” Lawrence Livermore National Laboratory Technical Report,
1995.

[2] R. L. Grosman, H. Hulen, X. Qin, T. Tyler, W. Xu, “An Architecture for a Scalable,
High Performance Digital Library,” Proceedings of the 14th IEEE Computer Society Mass
Storage Systems Symposium, S. Coleman, editor, IEEE, Los Alamites, CA, 1995, pages
89-98.

[3] R. L. Grossman, "Early Experience with a System for Mining, Estimating, and
Optimizing Large Collections of Objects Managed Using an Object Warehouse ,"
Proceedings of the Workshop on Research Issues on Data Mining and Knowledge
Discovery, Montreal, Canada, June 2, 1996.

[4] R. L. Grossman, S. Bailey, and D. Hanley, “Data Mining Using Light Weight Object
Management in Clustered Computing Environments,” Proceedings of the Seventh
International Workshop on Persistent Object Systems, Morgan-Kauffmann, 1996.

[5] E. Mesrobian, R. Muntz, E. Shek, S. Nittel, M. LaRouche, and M. Krieger, “OASIS:
An Open Architecture Scientific Information System,” 6th International Workshop on
Research Issues in Data Engineering, New Orleans, La. February, 1996.

[6] R. L. Grossman and H. V. Poor, "Optimization Driven Data Mining and Credit
Scoring, Proceedings of the IEEE/IAFE 1996 Conference on Computational Intelligence
for Financial Engineering (CIFEr), IEEE, Piscataway, 1996, pages 104-110.

[7] D. Teaff, R. W. Watson, and R. A. Coyne, “The Architecture of the High
Performance Storage System (HPSS),” Proceedings of the Goddard Conference on Mass
Storage and Technologies, College Park, MD, March, 1995.

